Statistical Model Checking

Madhavan Mukund

Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

CSI NCFM, 16 October 2014

Stochastic systems

- Next states depends probabilistically on current state and past history
 - Markov property: history prior to current state is ignored
 - Probabilistic transition function
- Useful for modelling
 - Randomization Breaking symmetry in distributed algorithms
 - Uncertainty Environmental interference, imprecise sensors, ...
 - Quantitative properties Performance, quality of service
- Two major domains of application
 - Cyber Physical Systems Auto pilot, anti-lock braking, . . .
 - Biological systems Signalling pathways, cell interactions, . . .

A simple communication protocol

• Sending a message on a channel

A simple communication protocol

• Associate probabilities with the events

A simple communication protocol

• Label states with atomic propositions

Discrete Time Markov Chain (DTMC)

 $D = (S, S_{init}, P, L)$

$$P = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$C(s_0) = \emptyset,$$

$$L(s_1) = \{try\},$$

$$L(s_2) = \{fail\},$$

$$L(s_3) = \{succ\}$$

 $AP = \{try, fail, succ\}$

Typical properties of interest

- Path based properties
 What is the probability of requiring more than 10 retries?
- Transient properties
 What is the probability of being in state s₁ after 16 steps?
- ExpectationWhat is the average number of retries required?

This talk

Focus on path based properties

- Properties refer to sets of paths
 - What is the probability of requiring more than 10 retries?
 - Ratio of runs requiring more than 10 retries to set of all runs
 - Runs are infinite paths
- How do we count or measure sets of infinite paths?

- Probability of a finite path: multiply the probabilities
 - $\bullet \ \ s_0 \xrightarrow{1} s_1 \xrightarrow{0.01} s_2 \xrightarrow{1} s_0 \xrightarrow{1} s_1 \xrightarrow{0.98} s_3$
 - Probability is $1 \cdot 0.01 \cdot 1 \cdot 1 \cdot 0.98 = 0.0098$
- A single infinite path has probability 0
 - Infinite product of values below 1
- How do we identify sets of infinite paths with non-zero probability?

- A cylinder is a set of paths that share a common prefix
 - $Cyl(s_0s_1s_2s_0s_1s_3) = \{\rho \mid \rho = s_0s_1s_2s_0s_1s_3\rho'\}$
 - Collectively, $Cyl(s_0s_1s_2s_0s_1s_3)$ has same probability, 0.0098 as the common prefix $s_0s_1s_2s_0s_1s_3$
- A set of paths can be measured if:
 - it is a cylinder, or the complement of one
 - it is a countable union of measurable subsets
- The empty set and the set of all runs can be measured (Why?)

 Paths that fail immediately Cyl(s₀s₁s₂)

- Paths that fail immediately Cyl(s₀s₁s₂)
- Paths with at least one failure $Cyl(s_0s_1s_2) \cup Cyl(s_0s_1s_1s_2) \cup Cyl(s_0s_1s_1s_2) \cup \cdots$

- Paths that fail immediately Cyl(s₀s₁s₂)
- Paths with at least one failure $Cyl(s_0s_1s_2) \cup Cyl(s_0s_1s_1s_2) \cup Cyl(s_0s_1s_1s_1s_2) \cup \cdots$
- Paths with no waiting and at most two failures $Cyl(s_0s_1s_3) \cup$ $Cyl(s_0s_1s_2s_0s_1s_3) \cup$ $Cyl(s_0s_1s_2s_0s_1s_2s_0s_1s_3)$

Model checking properties

- Focus on probabilistic reachability
 - "Something good happens"
 - $R_s(s')$: probability of reaching s' from s
 - Measure of all paths ρ starting with s that contain s'
- Dual is invariance
 - Behaviour stays within a subset of states $G \subseteq S$
 - "Nothing good happens"
 - Behaviour never reaches $S \setminus G$
- All reachability probabilities are measurable
 - $R_s(s')$: union of all cylinders $Cyl(ss_0s_1...s_ks')$ where s' does not occur in $ss_0...s_k$
 - Disjoint cylinders, so add their measures, no double counting

Model checking properties

- Express $R_s(s')$ inductively
 - $R_s(s') = 1$, if s = s'
 - $R_s(s') = \sum_{s''} P(s, s'') R_{s''}(s')$, otherwise
- Similar equations for each $R_{s''}(s')$
- Solution we want is a fixed point for this system of equations
- Can be solved iteratively
 - Initially assign 0 to each $R_{s''}(s')$
 - Update using the inductive definition

Drawbacks

- Explicit computation of probabilities needs to examine all states
- Need to manipulate entire reachable state space
- Infeasible for practical applications
 - Cyber physical systems
 - Biological models

Statistical approach

- Simulate the system repeatedly using the underlying probabilities
- For each run determine if it satisfies the property
- Suppose c out N runs are successful
- Estimate the probability of the property holding as $\frac{c}{N}$

Law of large numbers

As N tends to ∞ , $\frac{c}{N}$ converges to the true value

Statistical approach

- Why does this help?
- Simulation is easier than exhaustively exploring state space
 - Only need to remember states along the path
 - How much of the path you keep depends on the property
- Easy to parallelize: simulations are independent

Constraints

- Properties must be bounded
 - Each simulation succeeds or fails in a finite amount of time
- Number of simulations may be large
- Guarantees are probabilistic
 - Explicit computations "solve" probabilistic systems "exactly"

Bounded properties

- Is reachability a bounded property?
 - If the simulation reaches s' we can stop the simulation
 - What if the simulation does not visit s' for a long time?
- Bounded reachability: reachable in k steps or less
- Generalize linear-time temporal logic (LTL) to Bounded LTL (BLTL)
 - Atomic propositions
 - Boolean connectives ¬, ∧, . . .
 - $X\varphi$: φ holds at the next state
 - $\varphi U^k \psi$: within k steps, ψ will hold and until then φ holds
- Interpret along a run $\rho = s_0 s_1 s_2 \dots$

Monte Carlo model checking

- ullet Input is a BLTL formula arphi and a probabilistic system D
- ullet Inductively compute a bound t from arphi
 - \bullet Non trivial bounds come from subformulas $\psi \, U^k \psi'$
 - \bullet Bound for $\neg \psi$ is same as for ψ
 - For $\psi \wedge \psi'$, use max of the two bounds
 - For $X\psi$, add 1 to the bound for ψ
- Simulate the system N times, each simulation bounded by t steps
- Report $\frac{c}{N}$, where c is the number of good runs

Statistical estimation

Coin tossing

- Toss a coin 100 times, observe 70 heads estimate P(h) = 0.7
 - Maximum likelihood estimate
 - Of all possible values of P(h), 0.7 maximizes probability of the given observation, 70 heads out of 100
- Observe 7 heads out of 10, 70 out of 100, 700 out of 1000
 - All give the same estimate
 - Are all the experiments equivalent?
- Intuitively, more trials give us more confidence in the estimate
- How do we quantify this?

- Rephrase the problem: Is $P(h) \ge \theta$
 - Call this our hypothesis H
 - The converse hypothesis is $K : P(h) < \theta$
- Fix the number of simulations, N, and a threshold, c
- After our simulation
 - If more than c of N simulations succeed, accept H
 - If c or fewer simulations succeed, reject H, accept K
- Errors
 - False negative (Type-I) Accept K when H holds
 - False positive (Type-II) Accept H when K holds
- Want to bound the error of our estimate
 - \bullet Probability of a Type-I error is bounded by α
 - ullet Probability of a Type-II error is bounded by eta

Probability L_p of accepting hypothesis $H: p \ge \theta$ as a function of p

• Step function requires exhaustive sampling

- Instead, introduce an indifference region, $\theta \pm \delta$
 - Hypthesis $H: P(h) \ge \theta + \delta = p_0$
 - Hypthesis $K: P(h) \le \theta \delta = p_1$
- Within the indifference region, we are neutral to the answer
 - Too close to call!

Probability L_p of accepting hypothesis $H: p \ge p_0$ as a function of p, with an indifference region

Single sampling plan

- Given $H: p \ge p_0, K: p \le p_1$
- Fix a number of trials N and constant c so that
 - ullet If we see more than c successes, we accept H
 - ullet If we see c or fewer successes, we accept K
- Since we have fixed c, we may make mistakes
 - Type-I: accept K when H holds (false negative)
 - Type-II: accept H when K holds (false positive)
- How do we choose N and c so that we achieve desired error bounds?
 - ullet Probability of Type-I errors bounded by lpha
 - ullet Probability of Type-II errors bounded by eta

Single sampling plan

- Let X be a Bernoulli variable (i.e., a biased coin) with probability p
- Let Y be the number of successes (i.e., heads) after N trials

$$F(c; N, p) \stackrel{\triangle}{=} P(Y \le c) = \sum_{i=0}^{c} {N \choose i} p^{i} (1-p)^{N-i}$$

- We have fixed a threshold c, so
 - We accept K with probability F(c; N, p)
 - We accept H with probability 1 F(c; N, p)
- The sampling plan $\langle N, c \rangle$ has strength $\langle \alpha, \beta \rangle$ if
 - $F(c; N, p_0) \leq \alpha$ (accept K when $p \geq p_0$)
 - $1 F(c; N, p_1) \le \beta$ (accept H when $p \le p_1$)

Single sampling plan

- The sampling plan $\langle N, c \rangle$ has strength $\langle \alpha, \beta \rangle$ if
 - $F(c; N, p_0) \le \alpha$
 - $1 F(c; N, p_1) \le \beta$
- Can compute N and c that satisfy these constraints
- Unfortunately, no closed form solution
- Can numerically solve using binary search [Younes]

Adaptive sampling

- ullet Suppose our single sampling plan is $\langle 1000,700
 angle$
 - 1000 samples, accept H if 701 or more successes, K otherwise
- We have completed 600 samples and already observed 300 failures
- No point in continuing the test!
- Can we do adaptive sampling?

Sequential probability ratio test (SPRT) [Wald 1945]

• After m samples, suppose we have seen d_m successful samples

$$f_m = \prod_{i=1}^m \frac{Pr[X_i = x_i \mid p = p_1]}{Pr[X_i = x_i \mid p = p_0]} = \frac{p_1^{d_m} (1 - p_1)^{m - d_m}}{p_0^{d_m} (1 - p_0)^{m - d_m}}$$

- Numerator captures likelihood of current sample with hypothesis K
- Denominator captures likelihood of current sample with hypothesis H
- Fix two thresholds A, B
 - If ratio f_m is above A, accept K and stop
 - If ratio f_m is below B, accept H and stop
 - Otherwise, continue drawing samples

Sequential probability ratio test (SPRT)

ullet After m samples, suppose we have seen d_m successful samples

$$f_m = \prod_{i=1}^m \frac{Pr[X_i = x_i \mid p = p_1]}{Pr[X_i = x_i \mid p = p_0]} = \frac{p_1^{d_m} (1 - p_1)^{m - d_m}}{p_0^{d_m} (1 - p_0)^{m - d_m}}$$

- Fix two thresholds A, B
 - If ratio f_m is above A, accept K and stop
 - If ratio f_m is below B, accept H and stop
 - Otherwise, continue drawing samples
- \bullet Fixing A and B to give overall strength $\langle \alpha, \beta \rangle$ is nontrivial
 - In practice, choose $A = \frac{1-\beta}{\alpha}$ and $B = \frac{1-\alpha}{\beta}$
 - This yields a test with strength $\langle \alpha', \beta' \rangle$ where $\alpha' + \beta' \leq \alpha + \beta$
 - At least one of the new bounds is smaller than the original, usually both

SPRT based statistical model checking

- Fix a threshold θ and an indifference region $\theta \pm \delta$ along with error bounds α,β
- Let $p_0 = \theta + \delta$, $p_1 = \theta \delta$
- Set $A = \frac{1-\beta}{\alpha}$ and $B = \frac{1-\alpha}{\beta}$
- ullet Draw samples and evaluate the ratio f_i after sample i
 - If $f_i > A$, accept K
 - If $f_i < B$, accept H
 - Otherwise, draw another sample

Boolean combinations

- To verify $\neg \psi$ with Type-I error α and Type-II error β , sufficient to verify ψ with Type-I error β and Type-II error α .
- Let $\varphi = \psi_1 \wedge \psi_2$.
 - Assume that each ψ_i can be decided with Type-I error α_i and Type-II error β_i .
 - Then φ can be decided with Type-I error $\min(\alpha_1, \alpha_2)$ and Type-II error $\max(\beta_1, \beta_2)$.

Nested probabilities

What if we have nested probabilistic operators?

- Compute $Pr_{\geq \theta}(\varphi)$, where φ itself is of the form $Pr_{\geq \theta'}(\psi)$.
- A single sample is not enough:
 - \bullet Need to nest sampling for ψ with each sample of φ
- Can be done
 - ullet Can derive errors bounds for φ given bounds for ψ
 - But expensive: exponential blow up in samples

Other challengess

- Rare events
 - If the probability is very low, need more samples for meaningful estimate
 - Alternative notion called importance sampling [Clarke, Zuliani]
- Incorporating nondeterminism
 - Markov Decision Processes: each action determines a separate probability distribution
 - Cannot directly apply statistical techniques
 - Resolve nondeterminism using a scheduler

Tools

Plasma

- https://project.inria.fr/plasma-lab/ statistical-model-checking
- Highly optimized, with parallel threads

UPPAAL

- Extension to UPPAAL for statistical model checking of timed automata
- http://people.cs.aau.dk/~adavid/smc
- Application of statistical model checking to quantitative properties

Reading

- Håkan L. S. Younes, Reid G. Simmons:
 Statistical probabilistic model checking with a focus on time-bounded properties
 Information and Computation 204(9), (2006) 1368–1409
- Axel Legay, Benoît Delahaye, Saddek Bensalem: Statistical Model Checking: An Overview Proc. Runtime Verification (RV) 2010, Springer LNCS 6418, (2010) 122–135