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Stochastic systems

o Next states depends probabilistically on current state and past
history

e Markov property: history prior to current state is ignored
e Probabilistic transition function

@ Useful for modelling

e Randomization Breaking symmetry in distributed algorithms
e Uncertainty Environmental interference, imprecise sensors, ...
e Quantitative properties Performance, quality of service

@ Two major domains of application

o Cyber Physical Systems Auto pilot, anti-lock braking, ...
e Biological systems Signalling pathways, cell interactions, ...



A simple communication protocol

@ Sending a message on a channel

retry




A simple communication protocol

@ Associate probabilities with the events




A simple communication protocol

@ Label states with atomic propositions




Discrete Time Markov Chain (DTMC)

AP = {try, fail, succ}
L(sg)=9,
L(s))={try},
L(s,)={fail},
L(s;)={succ}

D = (Slsinit’P’L)

S= {S()! S1y Sy 53}
Sinit = So

0 1 0 0
P 0 0.01 0.01 0.98
1 0 0 0
0

0 0 1




Typical properties of interest

@ Path based properties
What is the probability of requiring more than 10 retries?

@ Transient properties
What is the probability of being in state s; after 16 steps?

@ Expectation
What is the average number of retries required?

This talk

@ Focus on path based properties



Measuring set of paths

@ Properties refer to sets of paths
e What is the probability of requiring more than 10 retries?
e Ratio of runs requiring more than 10 retries to set of all runs

e Runs are infinite paths

@ How do we count or measure sets of infinite paths?



Measuring set of paths

@ Probability of a finite path: multiply the probabilities
1 0.01 1 1 0.98
@ Sp >SS —>S —>S >S5 —S3

o Probability is 1-0.01-1-1-0.98 = 0.0098

@ A single infinite path has probability 0

o Infinite product of values below 1

@ How do we identify sets of infinite paths with non-zero
probability?



Measuring set of paths

@ A cylinder is a set of paths that share a common prefix
o Cyl(sps152505153) = {p | p = sos1525051530" }
o Collectively, Cyl(sps15:505153) has same probability, 0.0098 as
the common prefix 3515505153
@ A set of paths can be measured if:
e it is a cylinder, or the complement of one

e it is a countable union of measurable subsets

@ The empty set and the set of all runs can be measured (\Why?)



Measuring set of paths

@ Paths that fail
immediately
Cy/(5051$2)




Measuring set of paths

@ Paths that fail
immediately

Cy/ (So 5152 )

@ Paths with at least one
failure
Cy/(50$1$2) U
Cy/(50515152) U
Cy/(5051515152) U---




Measuring set of paths

o Paths that fail
immediately
Cy/(5051$2)

@ Paths with at least one
failure
Cy/(50$1$2) U
Cy/(50515152) U
Cy/(5051515152) U---

@ Paths with no waiting
and at most two failures
Cy/(505153) U
Cy/(505152505153) U
Cy/(505152505152505153)



Model checking properties

@ Focus on probabilistic reachability
e “Something good happens”
o Ry(s’) : probability of reaching s’ from s

o Measure of all paths p starting with s that contain s’
@ Dual is invariance

e Behaviour stays within a subset of states G C S
e “Nothing good happens”
o Behaviour never reaches S\ G

@ All reachability probabilities are measurable

o Rs(s’) : union of all cylinders Cyl(ssgsi ... sks’) where s’ does
not occur in ssp ... Sk

e Disjoint cylinders, so add their measures, no double counting



Model checking properties

@ Express Rs(s") inductively
o R(s')=1,ifs=5¢
o Ry(s') = Z P(s,s")Rs(s"), otherwise

s//
e Similar equations for each Ry (s’)
@ Solution we want is a fixed point for this system of equations
@ Can be solved iteratively

o Initially assign 0 to each Ry (s’)

e Update using the inductive definition



Drawbacks

@ Explicit computation of probabilities needs to examine all
states

@ Need to manipulate entire reachable state space

@ Infeasible for practical applications
e Cyber physical systems

e Biological models



Statistical approach

@ Simulate the system repeatedly using the underlying
probabilities

@ For each run determine if it satisfies the property

@ Suppose ¢ out N runs are successful

@ Estimate the probability of the property holding as %

Law of large numbers

c
As N tends to oo, N converges to the true value



Statistical approach

@ Why does this help?
@ Simulation is easier than exhaustively exploring state space

e Only need to remember states along the path
e How much of the path you keep depends on the property

o Easy to parallelize: simulations are independent
Constraints
@ Properties must be bounded
e Each simulation succeeds or fails in a finite amount of time
@ Number of simulations may be large
o Guarantees are probabilistic

e Explicit computations “solve” probabilistic systems “exactly”



Bounded properties

Is reachability a bounded property?
o If the simulation reaches s’ we can stop the simulation

o What if the simulation does not visit s’ for a long time?

Bounded reachability: reachable in k steps or less

Generalize linear-time temporal logic (LTL) to Bounded LTL
(BLTL)

e Atomic propositions

e Boolean connectives —, A, ...

e Xy : © holds at the next state

o pUKey: within k steps, 1) will hold and until then ¢ holds

Interpret along a run p = sps1ss . ..



Monte Carlo model checking

@ Input is a BLTL formula ¢ and a probabilistic system D

@ Inductively compute a bound t from ¢
o Non trivial bounds come from subformulas v U1’
e Bound for =) is same as for 1
o For v A1)/, use max of the two bounds
e For X%, add 1 to the bound for v

@ Simulate the system N times, each simulation bounded by t
steps

@ Report % where ¢ is the number of good runs



Statistical estimation

Coin tossing

@ Toss a coin 100 times, observe 70 heads — estimate
P(h) =0.7

e Maximum likelihood estimate

o Of all possible values of P(h), 0.7 maximizes probability of the
given observation, 70 heads out of 100

@ Observe 7 heads out of 10, 70 out of 100, 700 out of 1000
o All give the same estimate

o Are all the experiments equivalent?
@ Intuitively, more trials give us more confidence in the estimate

@ How do we quantify this?



Hypothesis testing

Rephrase the problem: Is P(h) > 6

o Call this our hypothesis H
o The converse hypothesis is K : P(h) < 0

Fix the number of simulations, N, and a threshold, ¢

After our simulation

e If more than ¢ of N simulations succeed, accept H
o If ¢ or fewer simulations succeed, reject H, accept K

@ Errors

o False negative (Type-l) Accept K when H holds
o False positive (Type-IlI) Accept H when K holds

@ Want to bound the error of our estimate

o Probability of a Type-I error is bounded by «
o Probability of a Type-Il error is bounded by /3



Hypothesis testing

Probability L, of accepting hypothesis H : p > ¢ as a function of p

@ Step function requires exhaustive sampling

Lyy
1L

l—a—+

o™

<Y



Hypothesis testing

@ Instead, introduce an indifference region, 8 £ 9
o Hypthesis H: P(h) > 046 = po
o Hypthesis K: P(h) <0 —-6=p;
@ Within the indifference region, we are neutral to the answer

e Too close to call!



Hypothesis testing

Probability L, of accepting hypothesis H : p > pg as a function of
p, with an indifference region




Single sampling plan

o Given H:p>po, K:p<p1

@ Fix a number of trials N and constant ¢ so that
o If we see more than c successes, we accept H

o If we see ¢ or fewer successes, we accept K

@ Since we have fixed ¢, we may make mistakes
o Type-l: accept K when H holds (false negative)
o Type-ll: accept H when K holds (false positive)
@ How do we choose N and ¢ so that we achieve desired error
bounds?
e Probability of Type-l errors bounded by «
o Probability of Type-ll errors bounded by 3



Single sampling plan

@ Let X be a Bernoulli variable (i.e., a biased coin) with
probability p

@ Let Y be the number of successes (i.e., heads) after N trials

F(c; N, p) 2 P(Y <c¢)= <I>/) p'(1—p)N
0

=

@ We have fixed a threshold c, so

o We accept K with probability F(c; N, p)
o We accept H with probability 1 — F(c; N, p)

@ The sampling plan (N, ¢) has strength («, ) if

o F(e;N,po) <a oo, (accept K when p > pp)
o l—F(N,p1)<B i, (accept H when p < p;)



Single sampling plan

@ The sampling plan (N, ¢) has strength («, 3) if
o F(c;N,pp) <«
° 17F(C’Nap1)gﬂ

@ Can compute N and c that satisfy these constraints
@ Unfortunately, no closed form solution

e Can numerically solve using binary search [Younes|



Adaptive sampling

@ Suppose our single sampling plan is (1000, 700)

e 1000 samples, accept H if 701 or more successes, K otherwise

@ We have completed 600 samples and already observed 300
failures

@ No point in continuing the test!

@ Can we do adaptive sampling?



Sequential probability ratio test (SPRT) [Wald 1945]

o After m samples, suppose we have seen d,, successful samples

m

f _H PriXi =xi | p=p1] pim(1— pr
AL PrX; =X [ p=po]  pdm(1— po)m—m
i=1 o Po

)m—dm

o Numerator captures likelihood of current sample with
hypothesis K

e Denominator captures likelihood of current sample with
hypothesis H
@ Fix two thresholds A, B
o If ratio £, is above A, accept K and stop
e If ratio f,, is below B, accept H and stop

o Otherwise, continue drawing samples



Sequential probability ratio test (SPRT)

o After m samples, suppose we have seen d,, successful samples

)mfdm

H PriXi=xi|p=p] pi"(1-p
Pr[X =x; | p= po] pg"’(l — pp)m—dm

@ Fix two thresholds A, B

o If ratio £, is above A, accept K and stop
e If ratio f,, is below B, accept H and stop
o Otherwise, continue drawing samples

e Fixing A and B to give overall strength (a, 8) is nontrivial
153 l-—a

1_
@ In practice, choose A= —— and B =
«

o This yields a test with strength (o/, ') where o/ + 8’ < a + 8
o At least one of the new bounds is smaller than the original,
usually both



SPRT based statistical model checking

Fix a threshold 6 and an indifference region 6 + § along with
error bounds «, 3

Let pp=0+06, p1=6—-9

1-p 11—«
dB=

——an 3

Draw samples and evaluate the ratio f; after sample i

@ Set A=

o If f; > A, accept K
o If i < B, accept H

e Otherwise, draw another sample



Boolean combinations

@ To verify =) with Type-Il error o and Type-Il error 3,
sufficient to verify ¥ with Type-I error 5 and Type-II error a.

o Let p =11 Ao
e Assume that each %; can be decided with Type-| error «; and
Type-Il error 3; .
e Then ¢ can be decided with Type-I error min(ay, ) and
Type-ll error max(f1, B2).



Nested probabilities

What if we have nested probabilistic operators?

o Compute Prsy(yp), where ¢ itself is of the form Prsg/(1)).

@ A single sample is not enough:

o Need to nest sampling for ¢ with each sample of ¢

@ Can be done
e Can derive errors bounds for ¢ given bounds for v

e But expensive: exponential blow up in samples



Other challengess

@ Rare events

o If the probability is very low, need more samples for meaningful
estimate

o Alternative notion called importance sampling [Clarke, Zuliani

@ Incorporating nondeterminism

o Markov Decision Processes: each action determines a separate
probability distribution

e Cannot directly apply statistical techniques

e Resolve nondeterminism using a scheduler



Tools

@ Plasma

e https://project.inria.fr/plasma-lab/
statistical-model-checking

e Highly optimized, with parallel threads

e UPPAAL

o Extension to UPPAAL for statistical model checking of timed
automata

e http://people.cs.aau.dk/~adavid/smc

e Application of statistical model checking to quantitative
properties
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