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Stochastic systems

Next states depends probabilistically on current state and past
history

Markov property: history prior to current state is ignored
Probabilistic transition function

Useful for modelling

Randomization Breaking symmetry in distributed algorithms
Uncertainty Environmental interference, imprecise sensors, . . .
Quantitative properties Performance, quality of service

Two major domains of application

Cyber Physical Systems Auto pilot, anti-lock braking, . . .
Biological systems Signalling pathways, cell interactions, . . .



A simple communication protocol

Sending a message on a channel



A simple communication protocol

Associate probabilities with the events



A simple communication protocol

Label states with atomic propositions



Discrete Time Markov Chain (DTMC)



Typical properties of interest

Path based properties
What is the probability of requiring more than 10 retries?

Transient properties
What is the probability of being in state s1 after 16 steps?

Expectation
What is the average number of retries required?

This talk

Focus on path based properties



Measuring set of paths

Properties refer to sets of paths

What is the probability of requiring more than 10 retries?

Ratio of runs requiring more than 10 retries to set of all runs

Runs are infinite paths

How do we count or measure sets of infinite paths?



Measuring set of paths

Probability of a finite path: multiply the probabilities

s0
1−→ s1

0.01−−→ s2
1−→ s0

1−→ s1
0.98−−→ s3

Probability is 1 · 0.01 · 1 · 1 · 0.98 = 0.0098

A single infinite path has probability 0

Infinite product of values below 1

How do we identify sets of infinite paths with non-zero
probability?



Measuring set of paths

A cylinder is a set of paths that share a common prefix

Cyl(s0s1s2s0s1s3) = {ρ | ρ = s0s1s2s0s1s3ρ
′}

Collectively, Cyl(s0s1s2s0s1s3) has same probability, 0.0098 as
the common prefix s0s1s2s0s1s3

A set of paths can be measured if:

it is a cylinder, or the complement of one

it is a countable union of measurable subsets

The empty set and the set of all runs can be measured (Why?)



Measuring set of paths

Paths that fail
immediately
Cyl(s0s1s2)

Paths with at least one
failure
Cyl(s0s1s2) ∪
Cyl(s0s1s1s2) ∪
Cyl(s0s1s1s1s2) ∪ · · ·

Paths with no waiting
and at most two failures
Cyl(s0s1s3) ∪
Cyl(s0s1s2s0s1s3) ∪
Cyl(s0s1s2s0s1s2s0s1s3)
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Model checking properties

Focus on probabilistic reachability

“Something good happens”

Rs(s ′) : probability of reaching s ′ from s

Measure of all paths ρ starting with s that contain s ′

Dual is invariance

Behaviour stays within a subset of states G ⊆ S

“Nothing good happens”

Behaviour never reaches S \ G

All reachability probabilities are measurable

Rs(s ′) : union of all cylinders Cyl(ss0s1 . . . sks
′) where s ′ does

not occur in ss0 . . . sk

Disjoint cylinders, so add their measures, no double counting



Model checking properties

Express Rs(s ′) inductively

Rs(s ′) = 1, if s = s ′

Rs(s ′) =
∑
s′′

P(s, s ′′)Rs′′(s
′), otherwise

Similar equations for each Rs′′(s
′)

Solution we want is a fixed point for this system of equations

Can be solved iteratively

Initially assign 0 to each Rs′′(s
′)

Update using the inductive definition



Drawbacks

Explicit computation of probabilities needs to examine all
states

Need to manipulate entire reachable state space

Infeasible for practical applications

Cyber physical systems

Biological models



Statistical approach

Simulate the system repeatedly using the underlying
probabilities

For each run determine if it satisfies the property

Suppose c out N runs are successful

Estimate the probability of the property holding as
c

N

Law of large numbers

As N tends to ∞,
c

N
converges to the true value



Statistical approach

Why does this help?

Simulation is easier than exhaustively exploring state space

Only need to remember states along the path
How much of the path you keep depends on the property

Easy to parallelize: simulations are independent

Constraints

Properties must be bounded

Each simulation succeeds or fails in a finite amount of time

Number of simulations may be large

Guarantees are probabilistic

Explicit computations “solve” probabilistic systems “exactly”



Bounded properties

Is reachability a bounded property?

If the simulation reaches s ′ we can stop the simulation

What if the simulation does not visit s ′ for a long time?

Bounded reachability: reachable in k steps or less

Generalize linear-time temporal logic (LTL) to Bounded LTL
(BLTL)

Atomic propositions

Boolean connectives ¬, ∧, . . .

Xϕ : ϕ holds at the next state

ϕUkψ: within k steps, ψ will hold and until then ϕ holds

Interpret along a run ρ = s0s1s2 . . .



Monte Carlo model checking

Input is a BLTL formula ϕ and a probabilistic system D

Inductively compute a bound t from ϕ

Non trivial bounds come from subformulas ψUkψ′

Bound for ¬ψ is same as for ψ

For ψ ∧ ψ′, use max of the two bounds

For Xψ, add 1 to the bound for ψ

Simulate the system N times, each simulation bounded by t
steps

Report
c

N
, where c is the number of good runs



Statistical estimation

Coin tossing

Toss a coin 100 times, observe 70 heads — estimate
P(h) = 0.7

Maximum likelihood estimate

Of all possible values of P(h), 0.7 maximizes probability of the
given observation, 70 heads out of 100

Observe 7 heads out of 10, 70 out of 100, 700 out of 1000

All give the same estimate

Are all the experiments equivalent?

Intuitively, more trials give us more confidence in the estimate

How do we quantify this?



Hypothesis testing

Rephrase the problem: Is P(h) ≥ θ
Call this our hypothesis H
The converse hypothesis is K : P(h) < θ

Fix the number of simulations, N, and a threshold, c

After our simulation

If more than c of N simulations succeed, accept H
If c or fewer simulations succeed, reject H, accept K

Errors

False negative (Type-I) Accept K when H holds
False positive (Type-II) Accept H when K holds

Want to bound the error of our estimate

Probability of a Type-I error is bounded by α
Probability of a Type-II error is bounded by β



Hypothesis testing

Probability Lp of accepting hypothesis H : p ≥ θ as a function of p

Step function requires exhaustive sampling



Hypothesis testing

Instead, introduce an indifference region, θ ± δ
Hypthesis H: P(h) ≥ θ + δ = p0

Hypthesis K : P(h) ≤ θ − δ = p1

Within the indifference region, we are neutral to the answer

Too close to call!



Hypothesis testing

Probability Lp of accepting hypothesis H : p ≥ p0 as a function of
p, with an indifference region



Single sampling plan

Given H : p ≥ p0, K : p ≤ p1

Fix a number of trials N and constant c so that

If we see more than c successes, we accept H

If we see c or fewer successes, we accept K

Since we have fixed c , we may make mistakes

Type-I: accept K when H holds (false negative)

Type-II: accept H when K holds (false positive)

How do we choose N and c so that we achieve desired error
bounds?

Probability of Type-I errors bounded by α

Probability of Type-II errors bounded by β



Single sampling plan

Let X be a Bernoulli variable (i.e., a biased coin) with
probability p

Let Y be the number of successes (i.e., heads) after N trials

F (c ;N, p)
4
= P(Y ≤ c) =

c∑
i=0

(
N

i

)
pi (1− p)N−i

We have fixed a threshold c , so

We accept K with probability F (c ;N, p)
We accept H with probability 1− F (c ;N, p)

The sampling plan 〈N, c〉 has strength 〈α, β〉 if

F (c ;N, p0) ≤ α . . . . . . . . . . . . . . . . . . . . (accept K when p ≥ p0)
1− F (c ;N, p1) ≤ β . . . . . . . . . . . . . . . . (accept H when p ≤ p1)



Single sampling plan

The sampling plan 〈N, c〉 has strength 〈α, β〉 if

F (c ;N, p0) ≤ α
1− F (c ;N, p1) ≤ β

Can compute N and c that satisfy these constraints

Unfortunately, no closed form solution

Can numerically solve using binary search [Younes]



Adaptive sampling

Suppose our single sampling plan is 〈1000, 700〉
1000 samples, accept H if 701 or more successes, K otherwise

We have completed 600 samples and already observed 300
failures

No point in continuing the test!

Can we do adaptive sampling?



Sequential probability ratio test (SPRT) [Wald 1945]

After m samples, suppose we have seen dm successful samples

fm =
m∏
i=1

Pr [Xi = xi | p = p1]

Pr [Xi = xi | p = p0]
=

pdm1 (1− p1)m−dm

pdm0 (1− p0)m−dm

Numerator captures likelihood of current sample with
hypothesis K

Denominator captures likelihood of current sample with
hypothesis H

Fix two thresholds A, B

If ratio fm is above A, accept K and stop

If ratio fm is below B, accept H and stop

Otherwise, continue drawing samples



Sequential probability ratio test (SPRT)

After m samples, suppose we have seen dm successful samples

fm =
m∏
i=1

Pr [Xi = xi | p = p1]

Pr [Xi = xi | p = p0]
=

pdm1 (1− p1)m−dm
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Fix two thresholds A, B

If ratio fm is above A, accept K and stop
If ratio fm is below B, accept H and stop
Otherwise, continue drawing samples

Fixing A and B to give overall strength 〈α, β〉 is nontrivial

In practice, choose A =
1− β
α

and B =
1− α
β

This yields a test with strength 〈α′, β′〉 where α′ + β′ ≤ α + β
At least one of the new bounds is smaller than the original,
usually both



SPRT based statistical model checking

Fix a threshold θ and an indifference region θ ± δ along with
error bounds α, β

Let p0 = θ + δ, p1 = θ − δ

Set A =
1− β
α

and B =
1− α
β

Draw samples and evaluate the ratio fi after sample i

If fi > A, accept K

If fi < B, accept H

Otherwise, draw another sample



Boolean combinations

To verify ¬ψ with Type-I error α and Type-II error β,
sufficient to verify ψ with Type-I error β and Type-II error α.

Let ϕ = ψ1 ∧ ψ2.

Assume that each ψi can be decided with Type-I error αi and
Type-II error βi .

Then ϕ can be decided with Type-I error min(α1, α2) and
Type-II error max(β1, β2).



Nested probabilities

What if we have nested probabilistic operators?

Compute Pr≥θ(ϕ), where ϕ itself is of the form Pr≥θ′(ψ).

A single sample is not enough:

Need to nest sampling for ψ with each sample of ϕ

Can be done

Can derive errors bounds for ϕ given bounds for ψ

But expensive: exponential blow up in samples



Other challengess

Rare events

If the probability is very low, need more samples for meaningful
estimate

Alternative notion called importance sampling [Clarke,Zuliani]

Incorporating nondeterminism

Markov Decision Processes: each action determines a separate
probability distribution

Cannot directly apply statistical techniques

Resolve nondeterminism using a scheduler



Tools

Plasma

https://project.inria.fr/plasma-lab/

statistical-model-checking

Highly optimized, with parallel threads

UPPAAL

Extension to UPPAAL for statistical model checking of timed
automata

http://people.cs.aau.dk/~adavid/smc

Application of statistical model checking to quantitative
properties

https://project.inria.fr/plasma-lab/statistical-model-checking
https://project.inria.fr/plasma-lab/statistical-model-checking
http://people.cs.aau.dk/~adavid/smc
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Håkan L. S. Younes, Reid G. Simmons:
Statistical probabilistic model checking with a focus on
time-bounded properties
Information and Computation 204(9), (2006) 1368–1409
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