
Validation Methods
Missile Perspective

N Ranjana

Sc ‘F’

ASL, Hyderabad

Mission Avionics
1. System of Systems
2. Multiple Interacting Systems
3. Multiple Protocols
4. Multiple Buses
5. Multiple Algorithms
6. Time Synchronized Systems
7. Multiple Schedulers
8. Dependency of Systems on each other
9. Multiple Development Platforms
10.Multiple Target platforms
11.Multiple Sub-System configurations
12.Multiple Simulation Test Beds for Validation – (Algorithm Intensive)
13.Telemetry & Radar Systems
14.Test Jigs & Simulators

Components of a Weapon System

Module On-board /

Ground

Lang. KLOC Communication Interfaces

System 1 Onboard C 36 MIL-STD-

1553B/Ethernet/RS422/Digital

System 2 Onboard

C 12.5 MIL-STD-

1553B/RS422/Analog/Digital

System 3 Onboard C 3.5 MIL-STD-1553B/Analog/Digital

System 4 Onboard C 1.6 MIL-STD-1553B/Digital/Analog

System 5 Onboard C 6.9 MIL-STD-1553B/Digital/Analog

System 6 Onboard Assembly 2.8 MIL-STD-1553B/Digital/Analog

System 7 Ground C 96 Ethernet

System 8 Ground C 111 Ethernet/RS-422

System 9 Ground C 3.2 Ethernet/ MIL-STD-1553B

System 10 On-Board Assembly 2 RF

System 11 Ground C 100 Ethernet

Software Modules For a Deliverable System – A Sample

And Many More.......

Mission Critical Systems

 The mission critical nature of software makes it requiring special attention
and thus Independent Verification & Validation

 V&V activities

 Requirements Analysis

 Design Analysis

 Code Analysis

 Testing at Various Levels

 Formal Verification

Mission Testing Phases

 Software for Hardware Clearance

 BOOTROM Software

 Loaders

 Test Jigs

 Software for Phase II Testing

 Section Testing

 Software Modules Identified for Mission

 Software Integration Testing on Bench

 Software Hardware Testing with Simulator for Electrical Clearance

 Sign Checks for various Control Systems

 Trajectory Testing - Packages in Loop with 6DOF Simulation

 Control Response of Actual Hardware by Trial Actuation Test

 Hardware in Loop Testing for Various Control Systems

 Phase III & Phase IV Testing for Missile Integration

Planning

Code
Review

Static
Testing

Dynamic
Testing

Entry
Criterion

SRS

ICD

Hardware

Document

System

Design

Validation

Checklist Verification

Analysis

Memory Leaks

Rule Checking

Quality Metrics

Functional Testing

Fault Tolerance

State Analysis

Coverage

Exit

Criterion

Triage

Impact
Analysis

Change
Approval

Regression

Release

RC
Verification

Dependency
Updation

Config
Updation

Conventional IV&V Methodology

Ground Systems V&V Strategy

1. Code Walkthrough
 Checklist Based
 Timing Analysis across Multi-layered Systems
 Interface Dependency Analysis

2. Static Testing using Tools
 Commercial tools
 SPLint (Open Source)

3. Dynamic Testing
 Coverage based testing
 For memory leaks
 Unit Testing
 Open source tools –Valgrind,
 Bench Level Testing using Hardware Simulators
 Integration testing

On-Board Systems V&V Strategy

1. Code Walkthrough
 Checklist Based
 Timing Analysis across Multi-layered Systems
 Interface Dependency Analysis
 Hardware Configuration Validation (Interrupts/Timers/Registers/Modes of Operation)

2. Static Testing using Tools
 Commercial Tools (Limited)
 Splint

3. Dynamic Testing
 Coverage based testing
 Simulation
 Hardware In-loop Simulation (HILS)
 Bench Level Unit Testing
 Phase III & Phase IV Integration Checks

Checkout & Prelaunch

• Data Integrity
• Flow Traversal
• Calibration Parameters
• Iniatilizations
• Status Words
• Counters

Navigation

• Sensor Modeling
• Lift off sensing
• DCM Transformation
• Arithmetic
• Filters
• Navigation Algorithm
• Synchronization

Modes & Abort Conditions

• User Modes, Development Mode
• Modes of Operation
• Sensor data acquisition
• Cmd Handling
• Re-instating the state of variables after
Abort

Timing

• Timer Initialization
• Computation rate
• Attitude Updation
• Sensor Data Updation
• Time Synchronization of various systems

Hardware Configurations & Interrupts

• Interrupt handler activities
• Interrupt mapping
• Timers
• Hardware Modes
• Register Settings

Message Scheduling

• Message Frequencies
• Subaddress contents & refresh rates
• Protocol Interfaces
• Message formats
• Handshakes
• Retry Modes

Code Walkthrough & Checklists

 Compiler Warnings
 Compiler Compliance – ANSI, ISO, POSIX

 Commercial Tool 1
 MISRA Rule Checker (C & C++)
 Test Checker (Windows Platform)
 Audit (Cyclomatic Complexity, Nesting Levels, Paths)

 Commercial Tool 2
 LCSAJ Density
 Information Flow Analysis
 MC/DC Analysis
 Reachablitity
 Looping Depth

 Commercial Tool 3
 In-depth Indirections
 Run time errors like divide-by-zero
 Memory Leaks

 SPLint (Open Source tool)
 Those that cannot be detected by a compiler

Static Testing

Dynamic Testing Strategy

Applications of Formal Methods

Modules which can be Formally Verified:

1. Mission Algorithm
2. Control Algorithm
3. Guidance Algorithm
4. Navigation Algorithm
5. Sequence Module
6. Authorisation Module
7. Check Module
8. Launch Module
9. Kalman Filter
10. Command-Response Protocol
11. Schedulers
12. Safety Interlocks
13. Redundancy Mechanisms (Ground/On-board)
14. Reset Recovery Mechanisms

Formal Methods

 Requirements Elucidation - For a secure system, these may be the major security properties that must
be preserved by the system (called the formal security policy model)

 Specifications - For a secure system, these may be the major security properties that must be
preserved by the system (called the formal security policy model)

 Proof of correspondence between specification and requirements – It must be shown that the system,
as described by the specification, establishes and preserves the properties in the requirements policy. If
both are in a formal notation, rigorous proofs can be constructed, either manually or with machine
assistance.

 Proof of correspondence between source code and specifications – Although many formal techniques
were initially created to provide proof of correctness of code, this is rarely done because of the time and
expense involved, but may be done for particularly critical portions of the system.

 Proof of correspondence between machine code and source code – This type of proof is rare, both
because of the expense involved and because modern compilers are very reliable.

Light Weight Formal Methods

 Restate the requirements and conceptual model in a formal (or semi-formal)
notation, typically a state table description.

 Identify and correct ambiguities, conflicts, and inconsistencies.

 Use a model checker or theorem-prover to study system behaviour, demonstrate
properties, and produce traces of system behaviour. Developers, users, and subject
matter experts can then use these results to improve the conceptual model

A particularly interesting aspect of the “lightweight” approach to formal methods is that it has
been used to model and analyze the behaviour of software, hardware, and humans acting
together in systems.

Modes of Configuration & Operation (Sample Analysis)

Configurati

on

/Operatio

nal Modes

Bypass Periodic Maintenance Dev Maintenance Mode Flight Mode

Pre-launch Auto-launch Pre-launch Auto-launch Pre-launch Auto-launch Pre-launch Auto-launch

Portable

Mode

Condition 1 X

X

X

X X X

Operation

Mode

Condition 2 OP 1

OP2

Condition 2 X Condition 2 OP1

OP3

X X

X X Condition 2 x Condition 2 OP1

OP2

Condition 1 OP1

OP2

OP3

Launch

Mode

X X Condition 2 X Condition 2 OP1

OP2

X X

X X Condition 2 X Condition 2 OP1

OP2

Condition 1 OP1

OP2

OP3

OP4

OP5

Experiments Carried Out...

Model Checking Based Formal
Verification:

 Module: Auto-launch pre-condition module to
check the initial conditions for entering the
auto-launch sequence.

 Converted these specifications to LTL (Linear
Temporal Logic) based on conditional
constructs and properties

 C Code has been constructed in PROMELA
(Process META Language) preserving the
implemented logic

 Specifications are associated to the PROMELA
code

 PROMELA Code submitted to SPIN
 Simple Promela Interpreter (SPIN) output gives

the violations to the specifications.

Verification
Process

C Code

PROMELA

SPIN
ANALYSER

Specifications

LTL

Limitations of Code Walkthrough

Manual Code Walkthrough/Inspections Formal Methods

Dependent on verifier and respective domain
knowledge

Mathematical Skills are universal and can be applied
uniformly

Specifications (in English language) can have many
interpretations

Concise interpretation of the specification has no
ambiguity (since expressed in mathematical
properties)

Always Human Intensive Once established it is less human intensive

Can identify only the presence of Bugs, Cannot rule
out the absence of bugs

The Mathematical Proofs can ensure absence of
bugs

Completeness Criteria is based on human judgment 100% completion possible

Complex Dependencies of requirements on each
other is manually analysed and can lead to
ambiguity

Complete, Correct and Concise Requirements can be
framed.

Limitations of Static Testing

Static Testing Formal Methods

Cannot find vulnerabilities introduced during run
time

Mathematical formulations can cover the runtime
paths

Depends on the effectiveness of the tool and
configured rules

Less dependency on tools

Report generated is very huge, extraction of relevant
issues is manual

Simple output in terms of PASS-FAIL

May generate false positives and false negatives No such ambiguity

Cannot find out the complex problems which has
many indirections. Compilation is must for
identifying complex issues. But hardware
dependencies make it difficult for embedded
software.

Mathematical formulations are requirements based
and does not depend on the implementations

Limitations of Dynamic Testing

Dynamic Testing Formal Methods

Availability of the system execution environment System Execution environment is not required

Depends on the effectiveness of test cases Not dependent on test cases

Depends on the similarity of test bed environment to
the actual

Test bed environment not required

Multiple layered analysis required to identify the
source of the problem being reported

Directly root cause can be identified

Testing completeness can never reach 100%

It is possible to reach 100% formal verification

Difficulty in covering failure paths. Very difficult to
simulate the failure conditions and their
manifestation.

It is relatively easy to cover the failure paths.

State space explosion problem Relatively possible to handle using probability
constructs

Difficulty in simulating the physical conditions Since this is mathematical proof, simulating physical
conditions is not required.

Thank You

